Effects of chemical and physical parameters in the generation of microspheres by hydrodynamic flow focusing.

نویسندگان

  • Thomas Schneider
  • Glenn H Chapman
  • Urs O Häfeli
چکیده

Hydrodynamic flow focusing is a seminal, easy-to-use technology for micro- and nanodroplet generation. It is characterized by the co-axial focusing of two (or more) immiscible liquid streams forced through a small orifice. In this method, the outer continuous phase has a much higher flow velocity than the inner disperse phase. While passing through the orifice, the prevailing pressure drop and shear stress force the inner phase to break up into uniform droplets. Using a biodegradable poly(lactide-co-glycolide) (PLGA) polymer solution as the disperse phase, monodisperse and user-defined polymer micro- and nanospheres can be generated. Here we present a consecutive parameter study of hydrodynamic flow focusing to study the effect of chemical and physical parameters that effect the dispersity of the droplets generated in the 1-5 μm range. The parameter study shows the applicability and challenges of hydrodynamic flow focusing in the preparation of biodegradable microspheres. Applications for microspheres made with this method can be found in the medical, pharmaceutical and technical fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Study of Droplet Generation Process in a Microfluidic Flow Focusing

Microfluidic flow focusing devices have been utilized for droplet generation on account of its superior control over droplet size. Droplet based microfluidics addressed many scientific issues by providing a novel technological platform for applications such as biology, pharmaceutical industry, biomedical studies and drug delivery. This study numerically investigated the droplet generation proce...

متن کامل

Slip Velocity in Flow and Heat Transfer of Non-newtonian Fluids in Microchannels

The steady-state fully-developed laminar flow of non-Newtonian power-law fluids is examined in a circular microchannel with slip boundary condition and under an imposed constant wall heat flux. Effects of slip as well as the hydrodynamic and thermal key parameters on heat transfer and entropy generation are investigated. The results reveal that increasing the Brinkman number and the flow behavi...

متن کامل

Study of Chemically Reactive Flow and Heat Transfer in the Presence of a Uniform Magnetic Field

The effects of chemical reaction, thermal stratification, Soret and Dufour numbers on magneto-hydrodynamic free convective heat and mass transfer of a viscous, incompressible,and electrically conducting fluid on a vertical stretching surface embedded in a saturated porous medium are presented. A similarity transform is used to reduce the governing partial differential equations into a syste...

متن کامل

Hydrodynamic Studies of Fluidized Bed Chemical Vapor Deposition Reactors to Produce Carbon Nano Tubes via Catalytic Decomposition over Co/Pd MgO

The hydrodynamic studies of fluidized bed reactor has been reported in terms of pressure drop, minimum fluidization velocity and bed volume expansion to contribute to the optimization of the CNTs production parameters in fluidized bed reactors. Minimum fluidization velocity and pressure drop, as the most important parameters, were taken into account for the investigation of the hydrodynamic beh...

متن کامل

Effects of thermal diffusion and chemical reaction on MHD transient free convection flow past a porous vertical plate with radiation, temperature gradient dependent heat source in slip flow regime

An analytical investigation is conducted to study the unsteady free convection heat and mass transfer flow through a non-homogeneous porous medium with variable permeability bounded by an infinite porous vertical plate in slip flow regime while taking into account the thermal radiation, chemical reaction, the Soret number, and temperature gradient dependent heat source. The flow is considered u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Colloids and surfaces. B, Biointerfaces

دوره 87 2  شماره 

صفحات  -

تاریخ انتشار 2011